Encoding Geometric Invariances in Higher-Order Neural Networks
نویسندگان
چکیده
301 We describe a method of constructing higher-order neural networks that respond invariantly under geometric transformations on the input space. By requiring each unit to satisfy a set of constraints on the interconnection weights, a particular structure is imposed on the network. A network built using such an architecture maintains its invariant performance independent of the values the weights assume, of the learning rules used, and of the form of the nonlinearities in the network. The invariance exhibited by a firstorder network is usually of a trivial sort, e.g., responding only to the average input in the case of translation invariance, whereas higher-order networks can perform useful functions and still exhibit the invariance. We derive the weight constraints for translation, rotation, scale, and several combinations of these transformations, and report results of simulation studies.
منابع مشابه
Learning, invariance, and generalization in high-order neural networks.
High-order neural networks have been shown to have impressive computational, storage, and learning capabilities. This performance is because the order or structure of a high-order neural network can be tailored to the order or structure of a problem. Thus, a neural network designed for a particular class of problems becomes specialized but also very efficient in solving those problems. Furtherm...
متن کاملNeural Classifiers for Learning Higher-Order Correlations
Studies by various authors suggest that higher-order networks can be more powerful and are biologically more plausible with respect to the more traditional multilayer networks. These architectures make explicit use of nonlinear interactions between input variables in the form of higher-order units or product units. If it is known a priori that the problem to be implemented possesses a given set...
متن کاملA Balanced Comparison of Object Invariances in Monkey IT Neurons
Our ability to recognize objects across variations in size, position, or rotation is based on invariant object representations in higher visual cortex. However, we know little about how these invariances are related. Are some invariances harder than others? Do some invariances arise faster than others? These comparisons can be made only upon equating image changes across transformations. Here, ...
متن کاملReceptive Field Encoding Model for Dynamic Natural Vision
Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...
متن کاملModeling environmental indicators for land leveling, using Artificial Neural Networks and Adaptive Neuron-Fuzzy Inference System
Land leveling is one of the most important steps in soil preparation and cultivation. Although land leveling with machines requires considerable amount of energy, it delivers a suitable surface slope with minimal soil deterioration as well as damage to plants and other organisms in the soil. Notwithstanding, in recent years researchers have tried to reduce fossil fuel consumption and its delete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1987